Counting rational curves of arbitrary shape in projective spaces

نویسندگان

  • Aleksey Zinger
  • Frances Kirwan
چکیده

We present an approach to a large class of enumerative problems concerning rational curves in projective spaces. This approach uses analysis to obtain topological information about moduli spaces of stable maps. We demonstrate it by enumerating one-component rational curves with a triple point or a tacnodal point in the three-dimensional projective space and with a cusp in any projective space. AMS Classification numbers Primary: 14N99, 53D99 Secondary: 55R99

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of One-Nodal Rational Curves in Projective Spaces

We give a formula computing the number of one-nodal rational curves that pass through an appropriate collection of constraints in a complex projective space. The formula involves intersections of tautological classes on moduli spaces of stable rational maps. We combine the methods and results from three different papers.

متن کامل

Using Symmetry to Count Rational Curves

The recent “close encounter” between enumerative algebraic geometry and theoretical physics has resulted in many new applications and new techniques for counting algebraic curves on a complex projective manifold. For example, string theorists demonstrated that generating functions built from counting curves can have completely unexpected relationships with other geometric constructions, via mir...

متن کامل

Projective and affine symmetries and equivalences of rational curves in arbitrary dimension

We present a new algorithm to decide whether two rational parametric curves are related by a projective transformation and detect all such projective equivalences. Given two rational curves, we derive a system of polynomial equations whose solutions define linear rational transformations of the parameter domain, such that each transformation corresponds to a projective equivalence between the t...

متن کامل

Gromov–witten Classes, Quantum Cohomology, and Enumerative Geometry

The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological Field Theories are defined, and it is proved that tree level theories are determined by their cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005