Counting rational curves of arbitrary shape in projective spaces
نویسندگان
چکیده
We present an approach to a large class of enumerative problems concerning rational curves in projective spaces. This approach uses analysis to obtain topological information about moduli spaces of stable maps. We demonstrate it by enumerating one-component rational curves with a triple point or a tacnodal point in the three-dimensional projective space and with a cusp in any projective space. AMS Classification numbers Primary: 14N99, 53D99 Secondary: 55R99
منابع مشابه
Enumeration of One-Nodal Rational Curves in Projective Spaces
We give a formula computing the number of one-nodal rational curves that pass through an appropriate collection of constraints in a complex projective space. The formula involves intersections of tautological classes on moduli spaces of stable rational maps. We combine the methods and results from three different papers.
متن کاملUsing Symmetry to Count Rational Curves
The recent “close encounter” between enumerative algebraic geometry and theoretical physics has resulted in many new applications and new techniques for counting algebraic curves on a complex projective manifold. For example, string theorists demonstrated that generating functions built from counting curves can have completely unexpected relationships with other geometric constructions, via mir...
متن کاملProjective and affine symmetries and equivalences of rational curves in arbitrary dimension
We present a new algorithm to decide whether two rational parametric curves are related by a projective transformation and detect all such projective equivalences. Given two rational curves, we derive a system of polynomial equations whose solutions define linear rational transformations of the parameter domain, such that each transformation corresponds to a projective equivalence between the t...
متن کاملGromov–witten Classes, Quantum Cohomology, and Enumerative Geometry
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological Field Theories are defined, and it is proved that tree level theories are determined by their cor...
متن کامل